Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-8, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733626

ABSTRACT

Plants contain many bioactive compounds with potent antibacterial and efflux pump inhibitory activity (EPI). In this study, gallic acid extracted from pomegranate molasses by analytical HPLC holds promise as an EPI drug for Staphylococcus aureus mediated tetracycline resistance, it lowered the bacterial resistance and reversed the mechanism via tet family efflux pump, using molecular technique and in-silico molecular docking analysis. Extracted gallic acid combined with tetracycline demonstrated a significant decrease in the minimal inhibitory concentration MIC compared to its single activity. Similarly, little growth and lower fluorescence of S. aureus were observed on ethidium bromide (2.5 mg/mL) agar plates, indicating a reversible efflux pump mechanism and a potent EPI activity. Molecular docking demonstrated a promising affinity binding energy between gallic acid and tet efflux genes, opening a new baseline in bacterial infection treatment. PCR for tetK and Qac A/B genes failed to show any relation between tet genes and gallic acid.

2.
Mol Divers ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652365

ABSTRACT

Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.

3.
Environ Res ; 252(Pt 1): 118705, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38548251

ABSTRACT

The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.

4.
Environ Res ; 241: 117626, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37956754

ABSTRACT

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Subject(s)
Microalgae , Saccharum , Fatty Acids , Solvents , Lipids , Biofuels , Carbon , Methanol , Biomass
5.
Environ Res ; 241: 117628, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37956756

ABSTRACT

In this study, phycoremediation of textile wastewater (TWW) by freshwater cyanobacterial strains such as sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was evaluated, and lipids were simultaneously extracted from biomass for biodiesel production. Onset of the study, Phormidium sp. and Oscillatoria sp. F01 has better growth rates, increased biomass production, high chlorophyll content, and efficient nutrient utilization in TWW compared to Oscillatoria sp. F02. Phormidium sp. showed 1.41 g/L dry weight, followed by Oscillatoria sp. F01 with 1.39 g/L and Oscillatoria sp. F02 with 1.02 g/L biomass. Both strains demonstrated their capability to elevate the pH level while reducing TDS and eliminating/reducing several nutrients such as nitrates, nitrites, phosphates, sulphates, sulphides, chlorides, calcium, sodium, and magnesium. Further, the total lipids extracted from the TWW-grown Phormidium sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was estimated to be 8.20, 13.70 and 11.20 %, respectively, on day 21, which was higher than the lipid content obtained from control cultures. Further, biodiesel produced from the lipids of all strains showed higher levels of C12:0, C16:0, C16:1, C18:1, C18:2, and C18:3 among all the fatty acids. Therefore, they can potentially offer a valuable source of lipids and diverse fatty acids for high-quality biodiesel production. This integrated system not only offers a solution for TWW treatment but also provides a feedstock for renewable fuel production simultaneously.


Subject(s)
Cyanobacteria , Microalgae , Oscillatoria , Wastewater , Phormidium , Biofuels/microbiology , Biomass , Fatty Acids , Nutrients
6.
Microorganisms ; 11(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764018

ABSTRACT

Impacts of climate change rank among the century's most significant ecological and medical concerns. As a result of climatic changes, the distribution of some bacterial species will alter across time and space. Numerous bacterial infections will reorganize as a result worldwide. Acinetobacter baumannii Bouvet and Grimont is one of the most significant and frequently occurring bacteria identified in soil and air. The COVID-19 pandemic has changed how bacteriologists perceive this species as a new threat to human health. In order to estimate the existing and future worldwide distribution of A. baumannii under various climate change scenarios, about 1000 A. baumannii occurrence records were employed. Given its superior accuracy and dependability versus alternative modeling techniques, maximum entropy implemented in MaxEnt was selected as the modeling tool. The bioclimatic variable that contributes the most to the distribution of A. baumannii is the mean temperature of the coldest quarter (bio_11). The created current distribution model agreed with the species' actual globally dispersed distribution. It is projected that A. baumannii will experience a severe range expansion due to the increase in temperature brought on by global warming in different regions of its range. According to the risk maps created for 2050 and 2070 using two alternative RCPs, there are various regions that will be under risk of this bacterium as a result of rising temperature. Future data science and GIS evaluation of the current results are necessary, especially on a local level.

7.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837503

ABSTRACT

Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.


Subject(s)
Vaccines , Humans , Molecular Docking Simulation , Prevotella intermedia , Epitopes, T-Lymphocyte
8.
Medicina (Kaunas) ; 58(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422214

ABSTRACT

Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.


Subject(s)
Antimicrobial Stewardship , Carbapenems , Humans , Carbapenems/pharmacology , Carbapenems/therapeutic use , Genotype , Colistin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
9.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422556

ABSTRACT

Antimicrobial resistance (AMR) is a leading cause of treatment failure for many infectious diseases worldwide. Improper overdosing and the misuse of antibiotics contributes significantly to the emergence of drug-resistant bacteria. The co-contamination of heavy metals and antibiotic compounds existing in the environment might also be involved in the spread of AMR. The current study was designed to test the efficacy of heavy metals (arsenic) induced AMR patterns in clinically isolated extended-spectrum ß-lactamase (ESBL) producing bacteria. A total of 300 clinically isolated ESBL-producing bacteria were collected from a tertiary care hospital in Lahore, Pakistan, with the demographic characteristics of patients. After the collection of bacterial isolates, these were reinoculated on agar media for reidentification purposes. Direct antimicrobial sensitivity testing (AST) for bacterial isolates by disk diffusion methods was used to determine the AST patterns with and without heavy metal. The heavy metal was concentrated in dilutions of 1.25 g/mL. The collected bacterial isolates were isolated from wounds (n = 63, 21%), urine (n = 112, 37.3%), blood (n = 43, 14.3%), pus (n = 49, 16.3%), and aspirate (n = 33, 11%) samples. From the total 300 bacterial isolates, n = 172 were Escherichia coli (57.3%), 57 were Klebsiella spp. (19%), 32 were Pseudomonas aeruginosa (10.6%), 21 were Proteus mirabilis (7%) and 18 were Enterobacter spp. (6%). Most of the antibiotic drugs were found resistant to tested bacteria. Colistin and Polymyxin-B showed the highest sensitivity against all tested bacteria, but when tested with heavy metals, these antibiotics were also found to be significantly resistant. We found that heavy metals induced the resistance capability in bacterial isolates, which leads to higher AMR patterns as compared to without heavy metal tested isolates. The results of the current study explored the heavy metal as an inducer of AMR and may contribute to the formation and spread of AMR in settings that are contaminated with heavy metals.

10.
Molecules ; 27(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431957

ABSTRACT

Aztreonam is a Gram-negative bacteria-targeting synthetic monobactam antibiotic. Human serum albumin (HSA) plays an important role in the transference of pharmaceuticals, hormones, and fatty acids, along with other compounds, determining their biodistribution and physiological fate. Using several biophysical and in silico approaches, we studied the interaction of aztreonam with HSA under physiological environments in this study. Results confirm the formation of HSA-aztreonam complex where aztreonam showed moderate affinity towards HSA. A static mode of quenching was confirmed from the steady state fluorescence data. FRET findings also showed that there was a significant feasibility of energy transfer between HSA and aztreonam. Site marker displacement experimental conclusion suggested the binding site of aztreonam was the sub-domain IB of HSA. Circular dichroic spectroscopic analysis suggested that aztreonam interaction decreases the α-helical content of HSA. Changes in microenvironment were studied through synchronous fluorescence data. According to molecular docking results, the HSA-aztreonam complex is mostly maintained by non-covalent forces, with a binding energy of 7.7 kcal mol-1. The presence of a hydrogen bond, van der Waal interaction, and pi-anion interaction in the binding process, as well as conformational changes in HSA after binding with aztreonam, are all confirmed by molecular dynamic simulation.


Subject(s)
Aztreonam , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Aztreonam/pharmacology , Molecular Docking Simulation , Protein Binding , Tissue Distribution , Thermodynamics , Spectrometry, Fluorescence
11.
Medicina (Kaunas) ; 58(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295517

ABSTRACT

Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.


Subject(s)
Citrobacter freundii , Proteomics , Infant, Newborn , Humans , Proteome , RNA, Messenger , Toll-Like Receptor 3 , Vaccines, Subunit/chemistry , Epitopes , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Peptides
12.
Microorganisms ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36296253

ABSTRACT

The epidemiological and clinical aspects of coronavirus disease-2019 (COVID-19) have been subjected to several investigations, but little is known about symptomatic patients with negative SARS-CoV-2 PCR results. The current study investigated patients who presented to the hospital with respiratory symptoms (but negative SARS-CoV-2 RT-PCR results) to determine the prevalence of bacterial pathogens among these patients. A total of 1246 different samples were collected and 453 species of bacterial pathogens were identified by culture. Antibiotic susceptibility testing was performed via the Kirby Bauer disc diffusion test. Patients showed symptoms, such as fever (100%), cough (83%), tiredness (77%), loss of taste and smell (23%), rigors (93%), sweating (62%), and nausea (81%), but all tested negative for COVID-19 by PCR tests. Further examinations revealed additional and severe symptoms, such as sore throats (27%), body aches and pain (83%), diarrhea (11%), skin rashes (5%), eye irritation (21%), vomiting (42%), difficulty breathing (32%), and chest pain (67%). The sum of n = 1246 included the following: males, 289 were between 5 and 14 years, 183 (15-24 years), 157 (25-34 years), 113 (35-49 years), and 43 were 50+ years. Females: 138 were between 5 and 14 years, 93 (15-24 years), 72 (25-34 years), 89 (35-49 years), and 68 were 50+ years. The Gram-positive organisms isolated were Staphylococcus aureus (n = 111, 80.43%, MRSA 16.6%), E. faecalis (n = 20, 14.49%, VRE: 9.4%), and Streptococcus agalactiae (n = 7, 5.07%), while, Gram-negative organisms, such as E. coli (n = 135, 42.85%, CRE: 3.49%), K. pneumoniae (n = 93, 29.52%, CRE: 1.58%), P. aeruginosa (n = 43, 13.65%), C. freundii (n = 21, 6.66%), Serratia spp. (n = 8, 2.53%), and Proteus spp. (n = 15, 4.76%) were identified.

13.
Food Chem Toxicol ; 168: 113330, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35926645

ABSTRACT

In currently, biosynthesis of copper oxide nanoparticles (CuO NPs) are most widely used numerous in biological applications such as biosensor, energy, medicine, agriculture, environmental and industrial wastewater treatment. The hierarchical CuO NPs was synthesized via green chemistry method by using of Abutilon indicum (A. indicum) leaf extract, its nontoxic, facile and low-cost approaches. Biogenic synthesized CuO NPs was characterized by using a UV-visible absorption spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Field mission scanning electron microscopy (FE-SEM) with Energy-dispersive X-ray spectroscopy (EDX) analysis. The synthesized CuO NPs was performed antibacterial activity against human pathogenic organisms of both Gram negative (Escherichia coli and Salmonella typhi) and Gram positive (Bacillus subtilis and Staphylococcus aureus) bacteria by using agar well diffusion method. Biological synthesized CuO NPs was showed potential bactericidal activity against Gram positive bacteria of B. subtilis than compared to Gram negative bacteria of E. coli. The cytotoxic effect of A. indicum mediated synthesized CuO NPs was evaluated against to human lung A549 and breast MDA-MB-231cancer cell lines by determined using of MTT assay. In furthermore, photocatalytic dye degradation was performed that synthesized CuO NPs have effectively removed 78% of malachite green dye molecule. Our investigation results suggested that the green synthesized CuO NPs potential biological activity of antibacterial activity against Gram positive bacterial, anticancer activity was effectively against MDA-MB-231cancer cell line and good dye degradation was exhibited in malachite green. The A. indicum aqueous leaf extract mediated synthesized CuO NPs has strongly suggested promising nano-biomaterials for fabrication of biomedical applications.


Subject(s)
Breast Neoplasms , Malvaceae , Metal Nanoparticles , Agar/pharmacology , Anti-Bacterial Agents/chemistry , Breast Neoplasms/drug therapy , Copper/chemistry , Copper/pharmacology , Escherichia coli , Female , Gram-Positive Bacteria , Humans , Lung , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Oxides , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosaniline Dyes , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
14.
Food Chem Toxicol ; 168: 113340, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35934122

ABSTRACT

The present study focused on microwave assisted synthesis of zirconium nanoparticles (ZrO2NPs) using leaf extract of Phyllanthus niruri as ecofriendly approach and assessed its antimicrobial and bioremediation efficiency. Visual color transition from yellow to brown indicates the formation of ZrO2NPs which was further substantiated by UV-Visible absorption peak at 300 nm. Dynamic Light Scattering (DLS) analysis revealed that the average particle size of ZrO2NPs as 121.5 nm with negative zeta potential of -22.6 mv. Scanning electron microscopic analysis showed spherical shaped nanoparticles with an average size of 125.4 nm. Results of photocatalytic studies revealed that ZrO2NPs exhibited 74%, 62% and 57%, dye degradation for methyl red, methyl orange, and methyl blue respectively. Antimicrobial studies depicted that ZrO2NPs exhibited bactericidal activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger at dose of 200 µg/mL. Overall results of the present study revealed biogenic synthesis of ZrO2 NPs with potent bioremediation and antimicrobial properties.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Phyllanthus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Plant Extracts/pharmacology , Zirconium/pharmacology
15.
Food Chem Toxicol ; 168: 113366, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35977621

ABSTRACT

In this report, the green fabrication of copper oxide nanoparticles (CuNPs) using Turnera subulata leaf extract and assessed for the antibacterial and photocatalytic activities. The synthesis of CuNPs was performed using the leaves of T. subulata (TS-CuNPs) and characterized using UV-visible spectrophotometry, Fourier transforms infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Produced TS-CuNPs showing transmittance peaks approximately 707-878 cm-1, with a spherical shape particle with an average size of 58.5 nm. As synthesized TS-CuNPs were used as a coating material in cotton fabrics and tested the efficacy against Gram-negative and Gram-positive bacterial pathogens. TS-CuNPs inhibited the growth of Escherichia coli and Staphylococcus aureus on cotton fabrics. Antibiofilm activity of TS-CuNPs showed a 4-fold reduction in the biofilm formation of E. coli and S. aureus. Structural morphology of TS-CuNPs coated on cotton fabric analysis using SEM-EDX confirmed the attachment of TS-CuNPs and reduction in the bacterial attachment to the cotton fabrics. Thus, this study provides a potential strategy to improve the antibacterial property of cotton fabrics in textile production for medical, sportswear, and casual wear applications. Further, the photocatalytic activity against the tested dyes evident the potential in dye industry wastewater treatment. Hence, this work represents a simple, greener, and cost-effective route for in situ synthesis of CuNPs with the potential antibacterial and as a dye degradation agent for water remediation.


Subject(s)
Metal Nanoparticles , Plants, Medicinal , Turnera , Anti-Bacterial Agents/chemistry , Coloring Agents/chemistry , Copper/chemistry , Copper/pharmacology , Escherichia coli , Green Chemistry Technology , Metal Nanoparticles/chemistry , Oxides , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Water
16.
Microorganisms ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014038

ABSTRACT

Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.

17.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014052

ABSTRACT

Vaccines are vital for prevention and control of mycoplasma diseases. The exploration of a vaccine candidate for the development of a vaccine is imperative. The present study envisages the evaluation of immune and oxidative response against an adjuvanted, sonicated antigen of Mycoplasma capricolum subsp. capripneumonia in male Angora rabbits (1 year old, 2 kg) divided in four groups, each having six animals. Group 1 was the healthy control and received 1 mL PBS via subcutaneous route. Group 2 was administered 1 mL of saponin-adjuvanted and -sonicated antigen, Group 3 was given 1 mL of montanide ISA 50-adjuvanted and-sonicated antigen, and Group 4 was given 1 mL of standard vaccine via subcutaneous route. Animals were evaluated for cellular and humoral immune response and oxidative parameters at 0, 7, 14, 21, and 28 days of the study. Total leukocytic, neutrophilic, and basophilic counts showed a significant (p < 0.05) increase in vaccinated groups compared to the healthy group on most of the intervals. TNF-α levels were significantly (p < 0.05) higher in the Group 2 than the Group 1 at all the time intervals and more comparable to Group 4 than Group 3. IL-10 levels were significantly (p < 0.05) higher in vaccinated groups compared to the healthy group on days 14, 21, and 28, but were lower in Group 3 than in Group 2 and Group 4. More hypersensitivity as inflammation and histopathological cellular infiltration in the ear was produced in Group 2 and Group 4 than in Group 3. IgG levels were significantly (p < 0.05) higher in Group 2 and Group 4 than in Group 3 on days 14 and 21. Antibody titers were comparatively higher in Group 4, followed by Group 2 and 3, than Group 1. Significantly (p < 0.05) higher oxidant and lower antioxidant values were noted in Group 2 and 4 compared to Group 3 and Group 1 on most of the intervals. The TLC and antibody titer showed increasing trend throughout the trial, whereas TNF-α, IgG, L, M and E started decreasing from day 14, and IL-10, N and B started decreasing from day 21. This study concludes that the saponin-adjuvanted and-sonicated antigen induces comparatively higher immune response than montanide but is associated with oxidative and inflammatory reactions.

18.
Chemosphere ; 306: 135526, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780990

ABSTRACT

The phytoremediation potency of Gossypium hirsutum was explored in this research under the influence of pre-identified metal tolerant Streptomyces tritici D5 in Cr enriched sludge soil using various treatment sets (I to V) in a greenhouse setting. Interestingly, the G. hirsutum remarkable remediate the Cr metal from the Cr enriched sludge soil under diluted (50:50) condition in 90 days of greenhouse experiment. The S. tritici D5 also effectively support the growth and phytoremediation competence of G. hirsutum. This was evidenced by the under the diluted (set III) condition the growth and major biomolecules such as protein, carbohydrate, and chlorophyll content of G. hirsutum were considerably increased in quantity. Hence, the phytoremediation potential of G. hirsutum was effective at soil diluted with fertile and xenobiotics free soil with dilution ratio of 50:50 (set III) and followed by 75:25 (set II) ratio. Thus, under diluted conditions (50:50) G. hirsutum seed coated with S. tritici D5 showed an outstanding phytoremediation process. Therefore, this method can be implemented to the field level study to assess the metal removal prospects of this environmentally friendly method.


Subject(s)
Chromium , Soil Pollutants , Biodegradation, Environmental , Gossypium , Sewage , Soil , Soil Pollutants/analysis , Streptomyces
19.
Chemosphere ; 304: 135248, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35679978

ABSTRACT

This sustainable approach was performed to evaluate the bioremediation potential of cyanide resistant bacterial species on sago industry effluents and assess the possibility of using the yielded biomass as single cell protein (SCP). The predominant cyanide tolerant bacterium enumerated from muddy soil was identified as Streptomyces tritici D5 through 16S rRNA sequencing. The identified S. tritici D5 strains showed excellent resistant and degradation potential at 100 mM concentration of potassium cyanide. Furthermore, the physicochemical properties analysis of sago industry effluents results revealed that the most of the parameters were crossing the permissible limits of Pollution control board of India. The bioremediation process was performed at various temperatures at 25 °C, 35 °C, and 45 °C for a period of 30 days of continuous bioremediation process with the aid of an aerator. Surprisingly, the best organic pollutant reduction was found at 35 °C and 45 °C, with 25 °C following close behind. Remarkably, the dissolved oxygen (DO) level was gradually increased from 2.24 to 12.04 mg L-1 at 35 °C in 30 days of the remediation process. The pH and ammonia were also significantly increased during the bioremediation process in 30 days of treatment. Similarly, at 35 °C of bioremediation process the S. tritici D5 yielded maximum dried biomass (6.9 g L-1) with the total crude protein (SCP) as 4.8 g L-1 (69.56%) in 30 days of growth. These findings stated that S. tritici D5 can treat sago industry effluents and that the biomass produced may be considered SCP after some in-vitro and in-vivo analyses.


Subject(s)
Cyanides , Streptomyces , Biodegradation, Environmental , Biomass , Dietary Proteins , RNA, Ribosomal, 16S , Streptomyces/genetics
20.
Chemosphere ; 304: 135246, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35679985

ABSTRACT

Aim of this research was to treat the organics enriched Paper and Pulp Industry (PPI) effluents using multi-metal tolerant predominant indigenous bacterial species. In addition, assessing the potential of treated bacterial biomass as a single cell protein (SCP). The multi-metal tolerant Streptomyces tuirus OS1 was enumerated from the Paper and Pulp Industry (PPI) effluents was identified through standard molecular characterization. S. tuirus OS1 proficiently ameliorated organic contaminants in PPI effluent in the in study at 35 °C, 45 °C, and 25 °C. Fortunately, the S. tuirus OS1 considerably increased the dissolved oxygen level in treated PPI effluent in 30 days of bioremediation process. Interestingly, at 35 °C of bioremediation process the S. tuirus OS1 demonstrated increased dried biomass (7.1 g L-1) with the total crude protein (SCP) as 5.3 g L-1 (78.79%) in 30 days of bioremediation process. These findings suggest that S. tuirus OS1 is capable of reducing organic pollutants in PPI effluents and producing biomass with enriched protein content.


Subject(s)
Waste Disposal, Fluid , Water Pollutants, Chemical , Bacteria/metabolism , Biodegradation, Environmental , Biomass , Dietary Proteins , Industrial Waste/analysis , Paper , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...